Reeling in Big Phish with a Deep MD5 Net
نویسندگان
چکیده
Phishing continues to grow as phishers discover new exploits and attack vectors for hosting malicious content; the traditional response using takedowns and blacklists does not appear to impede phishers significantly. A handful of law enforcement projects — for example the FBI's Digital PhishNet and the Internet Crime and Complaint Center (ic3.gov) — have demonstrated that they can collect phishing data in substantial volumes, but these collections have not yet resulted in a significant decline in criminal phishing activity. In this paper, a new system is demonstrated for prioritizing investigative resources to help reduce the time and effort expended examining this particular form of online criminal activity. This research presents a means to correlate phishing websites by showing that certain websites are created by the same phishing kit. Such kits contain the content files needed to create the counterfeit website and often contain additional clues to the identity of the creators. A clustering algorithm is presented that uses collected phishing kits to establish clusters of related phishing websites. The ability to correlate websites provides law enforcement or other potential stakeholders with a means for prioritizing the allocation of limited investigative resources by identifying frequently repeating phishing offenders.
منابع مشابه
The Deadliest Catch: Reeling In Big Phish With a Deep MD5 Net
Phishing continues to grow as phishers discover new exploits and attack vectors for hosting malicious content; the traditional response using takedowns and blacklists does not appear to impede phishers significantly. A handful of law enforcement projects — for example the FBI's Digital PhishNet and the Internet Crime and Complaint Center (ic3.gov) — have demonstrated that they can collect phish...
متن کاملP-V-L Deep: A Big Data Analytics Solution for Now-casting in Monetary Policy
The development of new technologies has confronted the entire domain of science and industry with issues of big data's scalability as well as its integration with the purpose of forecasting analytics in its life cycle. In predictive analytics, the forecast of near-future and recent past - or in other words, the now-casting - is the continuous study of real-time events and constantly updated whe...
متن کاملA Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images
Nowadays, ground vehicle monitoring (GVM) is one of the areas of application in the intelligent traffic control system using image processing methods. In this context, the use of unmanned aerial vehicles based on thermal infrared (UAV-TIR) images is one of the optimal options for GVM due to the suitable spatial resolution, cost-effective and low volume of images. The methods that have been prop...
متن کاملSecuring Big Data over Network using MD5 Algorithm Technique
Big data refers to a collection of information that is too vast and complex to be effectively collected, processed and analyzes using traditional algorithms, tools and approaches. In order to utilize big data, researchers, business and governments are focusing efforts on datasets characterized by three challenges, volume, velocity and variety. These challenges requires research and innovation a...
متن کاملAn Architecture for Security and Protection of Big Data
The issue of online privacy and security is a challenging subject, as it concerns the privacy of data that are increasingly more accessible via the internet. In other words, people who intend to access the private information of other users can do so more efficiently over the internet. This study is an attempt to address the privacy issue of distributed big data in the context of cloud computin...
متن کامل